3.12.79 \(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [1179]

Optimal. Leaf size=111 \[ -\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 C \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-6/5*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*B*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*C*sin(d*x+c)/d/cos(d*x+c)^(
5/2)+2/3*B*sin(d*x+c)/d/cos(d*x+c)^(3/2)+6/5*C*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {4149, 2827, 2716, 2719, 2720} \begin {gather*} \frac {2 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {6 C \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]

[Out]

(-6*C*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*B*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*C*Sin[c + d*x])/(5*d*Cos[c
 + d*x]^(5/2)) + (2*B*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (6*C*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 4149

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)
]^2), x_Symbol] :> Dist[b^2, Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; F
reeQ[{b, e, f, A, B, C, m}, x] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx &=\int \frac {C+B \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\\ &=B \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx+C \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} B \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} (3 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 C \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} (3 C) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 C \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.33, size = 95, normalized size = 0.86 \begin {gather*} \frac {-18 C \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 B \cos ^{\frac {3}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 B \sin (c+d x)+9 C \sin (2 (c+d x))+6 C \tan (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]

[Out]

(-18*C*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 10*B*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 10*B
*Sin[c + d*x] + 9*C*Sin[2*(c + d*x)] + 6*C*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(501\) vs. \(2(147)=294\).
time = 0.20, size = 502, normalized size = 4.52

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 B \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\frac {2 C \left (24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{5 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(502\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+
2/5*C/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*sin(1
/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(
cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*si
n(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos
(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.85, size = 188, normalized size = 1.69 \begin {gather*} \frac {-5 i \, \sqrt {2} B \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} C \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} C \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (9 \, C \cos \left (d x + c\right )^{2} + 5 \, B \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/15*(-5*I*sqrt(2)*B*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*B*
cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 9*I*sqrt(2)*C*cos(d*x + c)^3*weiers
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 9*I*sqrt(2)*C*cos(d*x + c)^3*wei
erstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(9*C*cos(d*x + c)^2 + 5*B*c
os(d*x + c) + 3*C)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [B]
time = 4.79, size = 87, normalized size = 0.78 \begin {gather*} \frac {2\,B\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/cos(c + d*x)^(3/2),x)

[Out]

(2*B*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2))
 + (2*C*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1
/2))

________________________________________________________________________________________